Диагностическая тематическая работа №1 по подготовке к ЕГЭ по ФИЗИКЕ

по теме «Механика» (кинематика, динамика, статика, законы сохранения)

Инструкция по выполнению работы

На выполнение диагностической работы по физике даётся 90 минут. Работа включает в себя 18 заданий.

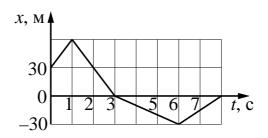
Ответы к заданиям 1–14 записываются в виде одной цифры, которая соответствует номеру правильного ответа. Эту цифру запишите в поле ответа в тексте работы.

Ответы к заданиям 15 и 16 записываются в виде последовательности цифр в поле ответа в тексте работы.

В случае записи неверного ответа зачеркните его и запишите рядом новый.

Задания 17 и 18 требуют развернутого ответа.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

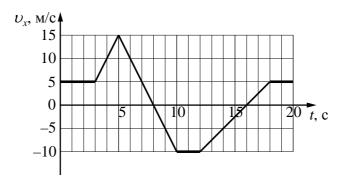

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям. Постарайтесь выполнить как можно больше заданий.

Желаем успеха!

Часть 1

При выполнении заданий 1–14 в поле ответа запишите одну цифру, которая соответствует номеру правильного ответа.

На рисунке показан график зависимости координаты тела, движущегося вдоль оси *Ox*. Для какого интервала времени модуль вектора перемещения принимает максимальное значение?

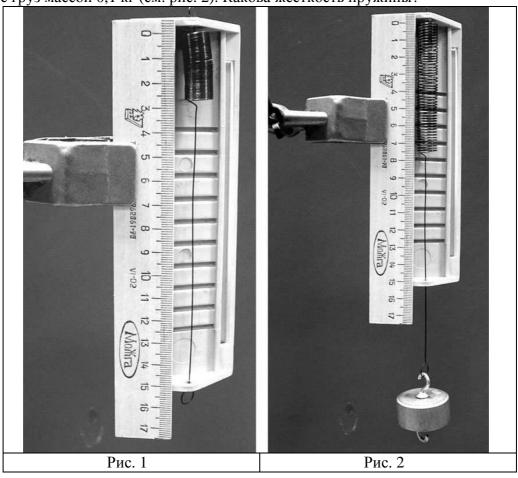

1) 0–1 c

2

Ответ:

- 2) 1–3 c
- 3) 3–6 c
- 4) 6–8 c

На рисунке приведён график зависимости проекции скорости тела от времени. Какой из графиков соответствует зависимости проекции ускорения этого тела a_x от времени в интервале времени от 12 до 16 с?



- 1) a_x , M/c^2 2 5 0 -5
- a_x , M/c^2
- 3) a_x , M/c^2 5 0 t, c

- Парашютист спускается вертикально с постоянной скоростью 2 м/с. Систему отсчёта, связанную с Землёй, считать инерциальной. В этом случае
 - 1) вес парашютиста равен нулю
 - 2) сила тяжести, действующая на парашютиста, равна нулю
 - 3) сумма всех сил, приложенных к парашютисту, равна нулю
 - 4) сумма всех сил, действующих на парашютиста, постоянна и не равна нулю

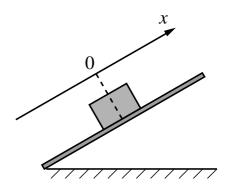
Ответ:

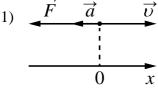
Для измерения жёсткости пружины ученик собрал установку (см. рис. 1), и подвесил к пружине груз массой 0,1 кг (см. рис. 2). Какова жёсткость пружины?

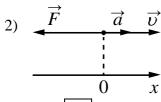
1) 40 H/M

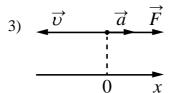
2) 20 H/M

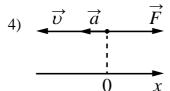
3) 13 H/M

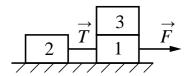

4) 0.05 H/M


- - 1) уменьшилась, так как плотность пресной воды меньше плотности солёной
 - 2) уменьшилась, так как уменьшилась глубина погружения льдинки в воду
 - 3) увеличилась, так как плотность солёной воды выше, чем плотность пресной воды
 - 4) не изменилась, так как масса льдинки не изменилась

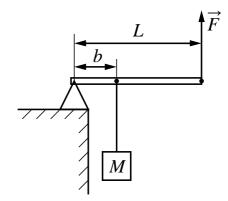

Ответ:


6


После того как брусок толкнули, он скользит вверх по наклонной плоскости. В системе отсчёта, связанной с плоскостью, направление оси Ox показано на рисунке справа. На каком из рисунков, представленных ниже, правильно показаны направления векторов скорости \vec{v} бруска, его ускорения \vec{a} и равнодействующей силы \vec{F} относительно оси Ox?



7

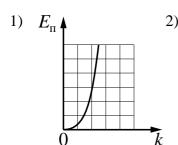

Одинаковые бруски, связанные нитью, движутся под действием внешней силы \vec{F} по гладкой горизонтальной поверхности (см. рисунок). Как изменится модуль силы натяжения нити \vec{T} , если третий брусок переложить с первого на второй?

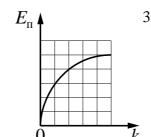
- 1) уменьшится в 1,5 раза
- 2) уменьшится в 2 раза
- 3) увеличится в 2 раза
- 4) увеличится в 3 раза

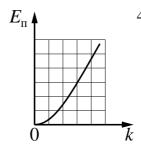
Ответ:

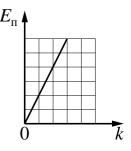
8 Груз удерживают на месте с помощью рычага, приложив вертикальную силу 400 Н (см. рисунок). Рычаг состоит из шарнира и однородного стержня массой 20 кг и длиной 4 м. Расстояние от оси шарнира до точки подвеса груза равно 1 м. Масса груза равна

- 80 кг
- 2) 100 kg
- 3) 120 кг
- 4) 160 кг

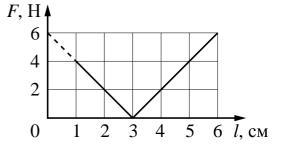

Ответ:


Груз массой 1 кг под действием силы 50 Н, направленной вертикально вверх, поднимается
на высоту 3 м. Изменение кинетической энергии груза при этом равно


- 30 Дж
- 2) 120 Дж
- 3) 150 Дж
- 4) 180 Дж


10	Тело массой 2 кг движется вдоль оси Ox . Его координата меняется в соответствии с уравнением $x = A + Bt + Ct^2$, где $A = 2$ м, $B = 3$ м/с, $C = 5$ м/с 2 . Чему равен импульс тела в момент времени $t = 2$ с?
	1) 86 кг·м/с 2) 48 кг·м/с 3) 46 кг·м/с 4) 26 кг·м/с Ответ:
11	Шары движутся со скоростями, показанными на рисунке, и при столкновении слипаются. Как будет направлен импульс шаров после столкновения? $\overrightarrow{\upsilon_2}$
	1) \nwarrow 2) \downarrow 3) \leftarrow 4) \swarrow Other:
12	Санки массой m тянут в гору с постоянной скоростью. Когда санки поднимутся на высоту h от первоначального положения, их полная механическая энергия
	1) не изменится
	2) увеличится на <i>mgh</i>
	3) будет неизвестна, так как не задан наклон горки
	4) будет неизвестна, так как не задан коэффициент трения
	Ответ:

Потенциальная энергия E_{Π} различных пружин, подчиняющихся закону Гука, при одинаковой деформации зависит от жёсткости k. Какой график выражает эту зависимость E_{Π} от k?



Ответ:

14 При проведении эксперимента ученик исследовал зависимость модуля силы упругости пружины от длины пружины, которая выражается формулой $F = k \cdot (l - l_0)$, где l_0 длина пружины в недеформированном состоянии. График полученной зависимости приведён на рисунке.

Какое(-ие) из утверждений соответствует(-ют) результатам опыта?

А. Длина пружины в недеформированном состоянии равна 3 см.

Б. Жёсткость пружины равна 200 Н/м.

- 1) только А
- 2) только Б
- 3) и А, и Б
- 4) ни А, ни Б

Часть 2

При выполнении заданий 15 и 16 запишите ответ так, как указано в тексте задания.

- В результате перехода с одной круговой орбиты на другую центростремительное ускорение спутника Земли уменьшается. Как изменяются при этом переходе радиус орбиты спутника, скорость его движения по орбите и период обращения вокруг Земли? Для каждой величины определите соответствующий характер изменения:
 - 1) увеличивается
 - 2) уменьшается
 - 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Радиус орбиты	Скорость движения по орбите	Период обращения вокруг Земли

Ученик исследовал движение бруска по наклонной плоскости и определил, что брусок, начиная движение из состояния покоя, проходит расстояние $30\ \text{cm}\ \text{c}\ \text{ускорением}\ 0.8\ \text{m/c}^2.$

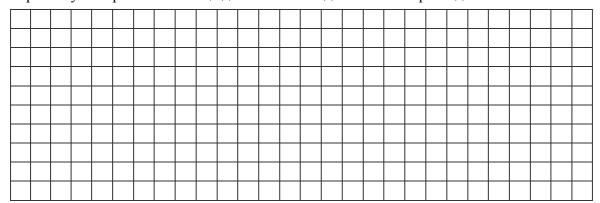
Установите соответствие между физическими величинами, полученными при исследовании движения бруска (см. левый столбец), и уравнениями, выражающими эти зависимости, приведёнными в правом столбце: к каждой позиции первого столбца подберите соответствующую позицию второго столбца.

ЗАВИСИМОСТИ

УРАВНЕНИЯ ДВИЖЕНИЯ

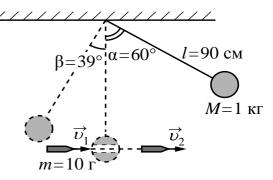
- A) зависимость пути, пройденного бруском, от 1) $l = At^2$, где A = 0,4 м/с² времени
- Б) зависимость модуля скорости бруска от $l = Bt^2$, где B = 0.8 м/с 2 пройденного пути

3)
$$v = C\sqrt{l}$$
, где $C = 1,3 \frac{\sqrt{M}}{c}$


4)
$$v = D\sqrt{l}$$
, где $D = 1,3$ с⁻¹

Запишите в таблицу выбранные цифры под соответствующими буквами.

Часть 3


Запишите полное решение, включающее запись краткого условия задачи (Дано), формул, применение которых необходимо и достаточно для решения задачи, а также математические преобразования и расчёты, приводящие к числовому ответу.

Тело, свободно падающее с некоторой высоты без начальной скорости, за время $\tau = 1$ с после начала движения проходит путь в n = 5 раз меньший, чем за такой же промежуток времени в конце движения. Найдите полное время движения.

Шар массой 1 кг, подвешенный на нити длиной 90 см, отводят от положения равновесия на угол 60° и отпускают. В момент прохождения шаром положения равновесия в него попадает пуля массой 10 г, летящая навстречу шару. Она пробивает его и продолжает двигаться горизонтально. Определите изменение скорости пули в результате попадания в шар, если он, продолжая движение в прежнем направлении,

18

отклоняется на угол 39°. (Массу шара считать неизменной, диаметр шара – пренебрежимо малым по сравнению с длиной нити, $\cos 39^\circ = \frac{7}{9}$.)

Ответы к заданиям 1-16

№ задания	Ответ
1	2
2	4
3	3
4	2
5	4
6	1
7	3
8	3
9	2
10	3
11	4
12	2
13	4
14	3
15	121
16	13

Решения и критерии оценивания выполнения заданий с 17 и 18

Тело, свободно падающее с некоторой высоты без начальной скорости, за время $\tau = 1$ с после начала движения проходит путь в n = 5 раз меньший, чем за такой же промежуток времени в конце движения. Найдите полное время движения.

 $y_{1} - \tau \qquad x$ $y_{2} - \tau$ $H \qquad y$

17

Возможное решение (рисунок не обязателен)

1. Свободно падающее тело движется равноускоренно с ускорением свободно падения g. В системе отсчета, связанной с землей (см. рис.), при указанных начальных условиях закон движения тела с постоянным ускорением (зависимость

координаты тело от времени) имеет вид: $y(t) = \frac{gt^2}{2}$.

2. Положение точки в момент $t_1 = \tau$ отмечено на рисунке $y(t_1) = y_1$, а в момент времени $t_2 = T - \tau$ отмечено $y(t_2) = y_2$. Здесь T – полное время движения:

$$y(T) = \frac{gT^2}{2} = H$$
. Это приводит к системе уравнений

$$y_1 = \frac{gt_1^2}{2} = \frac{g\tau^2}{2},$$

 $y_2 = \frac{gt_2^2}{2} = \frac{g(T-\tau)^2}{2},$

3. В соответствии с условием задачи путь S, пройденный за последнюю секунду $S = H - y_2 = \frac{g}{2} \Big[T^2 - (T - \tau)^2 \Big] = \frac{g \tau}{2} (2T - \tau)$, в n раз больше, чем за первую $y_1 = \frac{g \tau^2}{2}$: $S = n y_1$.

Отсюда получаем соотношение $2T-\tau=n\tau$, позволяющее вычислить полное время движения $T=\frac{n+1}{2}\tau$.

Ответ: T = 3 с

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	
I) записаны положения теории и физические законы, закономерности,	
применение которых необходимо для решения задачи выбранным	
способом (в данном случае: формула для равноускоренного движения);	
II) описаны все вновь вводимые в решении буквенные обозначения	3
физических величин;	
III) проведены необходимые математические преобразования, приводящие	
к правильному ответу;	
IV) представлен правильный ответ	
Правильно записаны все необходимые положения теории, физические	
законы, закономерности, и проведены необходимые преобразования. Но	
имеются следующие недостатки.	
Записи, соответствующие пункту II, представлены не в полном объёме или	
отсутствуют.	
ИЛИ	
В решении лишние записи, не входящие в решение (возможно, неверные),	2
не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и	
т.п.).	
ИЛИ	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) преобразования/вычисления не доведены до	
конца.	

ИЛИ	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев.	
Представлены только положения и формулы, выражающие физические	
законы, применение которых необходимо для решения задачи, без каких-	
либо преобразований с их использованием, направленных на решение	
задачи, и ответа.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для	
решения задачи (или утверждение, лежащее в основе решения), но	1
присутствуют логически верные преобразования с имеющимися	
формулами, направленные на решение задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения задачи (или в	
утверждении, лежащем в основе решения), допущена ошибка, но	
присутствуют логически верные преобразования с имеющимися	
формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	U

Шар массой 1 кг, подвешенный на нити длиной 90 см, отводят от положения равновесия на угол 60° и отпускают. В момент прохождения шаром положения равновесия в него попадает пуля массой 10 г, летящая навстречу шару. Она пробивает его и продолжает двигаться горизонтально. Определите изменение скорости пули в результате попадания в шар, если он, продолжая движение в прежнем направлении,

18

 $β=39^{\circ}$ $α=60^{\circ}$ l=90 cm M=1 KΓ m=10 Γ

отклоняется на угол 39°. (Массу шара считать неизменной, диаметр шара – пренебрежимо

малым по сравнению с длиной нити, $\cos 39^\circ = \frac{7}{9}$.)

Возможное решение

1. По закону сохранения импульса $Mu_1 - mv_1 = Mu_2 - mv_2$, где u_1 , u_2 – скорость шара до и после взаимодействия с пулей соответственно,

Отсюда,
$$\Delta v = v_2 - v_1 = \frac{M}{m} (u_2 - u_1).$$
 (1)

2. По закону сохранения энергии скорость шара в нижней точке траектории до попадания в него пули равна

$$u_1 = \sqrt{2gl(1-\cos\alpha)}$$
.

3. По закону сохранения энергии скорость шара в нижней точке траектории после вылета из него пули равна

$$u_2 = \sqrt{2gl(1-\cos\beta)} \ .$$

4. Подставляя в (1) изменение скорости шара, получим:

$$\Delta v = v_2 - v_1 = \frac{M}{m} \left(\sqrt{2gl(1 - \cos\beta)} - \sqrt{2gl(1 - \cos\alpha)} \right).$$

5. Проводя вычисления, получим:

$$\Delta v = -100 \, \frac{M}{c}$$

6. Ответ: скорость пули уменьшилась на 100 м/с

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы, закономерности,	
применение которых необходимо для решения задачи выбранным способом (в	
данном случае: закон сохранения механической энергии, закон сохранения	
импульса);	
II) описаны все вновь вводимые в решении буквенные обозначения физических	
величин;	
III) проведены необходимые математические преобразования, приводящие к	
правильному ответу;	
IV) представлен правильный ответ	
Правильно записаны все необходимые положения теории, физические законы,	2
закономерности, и проведены необходимые преобразования. Но имеются	
следующие недостатки.	
Записи, соответствующие пункту II, представлены не в полном объёме или	
отсутствуют.	
ИЛИ	
В решении лишние записи, не входящие в решение (возможно, неверные), не	
отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.).	

ИЛИ	
В необходимых математических преобразованиях или вычислениях допущены	
ошибки, и (или) преобразования/вычисления не доведены до конца.	
ИЛИ	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие <u>одному</u> из следующих случаев.	1
Представлены только положения и формулы, выражающие физические законы,	
применение которых необходимо для решения задачи, без каких-либо	
преобразований с их использованием, направленных на решение задачи, и	
ответа.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для решения	
задачи (или утверждение, лежащее в основе решения), но присутствуют	
логически верные преобразования с имеющимися формулами, направленные	
на решение задачи.	
или	
В ОДНОЙ из исходных формул, необходимых для решения задачи (или в	
утверждении, лежащем в основе решения), допущена ошибка, но присутствуют	
логически верные преобразования с имеющимися формулами, направленные	
на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2, 3 балла	